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i // ABSTRACT

=) On a Morse decomposition of an invariant set in a flow there are partial

orderings defined by the flow. These are called admissible orderings of the

Morse decomposition. The index filtrations for a total ordering of a Morse

decomposition are generalized in this paper with the definition and proof of
existence of index filtrations for admissible partial orderings of a Morse
decomposition.

It is shown that associated to an index filtration there is a collection
of chain complexes and chain maps called the chain complex braid of the index
filtration. The homology index braid of the corresponding admissible ordering
of the Morse decomposition is obtained by passing to homology in the chain

complex braid.
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INDEX FILTRATIONS AND THE HOMOLOGY INDEX BRAID FOR
PARTIALLY ORDERED MORSE DECOMPOSITIONS

Robert Franzosa

INTRODUCTION

In the classical Morse theory a gradient flow of a function
defined on a manifold is examined. The function‘is assumed to
have finitely many critical points. The statement of Morse theory
then relates the dimensions of the unstable invariant manifolds of
these critical points to algebraic invariants of the whole manifold.

In Conley [ 1] and Conley-Zeﬁnder [ 2] these ideas are extended
to a setting where the manifold is replaced with a compact invariant
set S in a locally compact local flow in a Hausdorff space with a
flow. The critical points are replaced with a collection M of
mutually disjoint compact invariant subsets of S. The gradient

/  structure is replaced with a total order that is defined on M and
respected by the flow on the complement, in S, of the union of the
sets in M.

The collection M is called a Morse decomposition of S. The
total order on M is called an admissible (total) ordering of the
Morse decomposition. Associated’to an admissible ordering of a
Morse decomposition there is a distinguished collection of compact
invariant subsets of S. This collection, which includes the Morse
decomposition, is called the collection of Morse sets of the admis -
sibleordering. Using an index filtration for an admissible ordering
of a Morse decomposition Conley-Zehnder [ 2] exhibit algebraic re-

lationships between the Conley indices of the associated Morse sets.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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In this paper we generalize these ideas by extending the defini-
tion of an admissible ordering of a Morse decomposition to include
partial orders. This extension is significant because for each Morse
decomposition there is an extremal partial (i.e., notnecessarily
total) order that serves as an admissible ordering.l This admissible
ordering is called the flow-ordering of the Morse decomposition.

In our setting the above described algebraic relations associated
to an admissible ordering of a Morse decomposition take the form of a
collection containing the homology of the Conley index of each Morse
set, flow-defined maps between these homology complexes, and braid
diagrams depicting relationships between these maps. This collection.
is called the homology index braid of the admissible orderi&g. For .
a given Morse decomposition the homology index braid of the flow-
ordering contains the homology index braid of each other admissible
ordering,and therefore yields the maximal amount of algebraic informa-
tion under consideration for the Morse decomposition. We refer to
the homology index braid of the flow-ordering as the homology index
braid of the Morse decomposition.

. As in [2 ],the algebraic relations (i.e.,the elements of the
homology index braid) associated to an admissible ordering of a Morse
decomposition are defined via an index filtration for the admissible

; ordering. The main focus of this paper is to generalize the index
filtrations for admissible total orderings (Conley-Zehnder [2 ]) by

defining and proving the existence of index filtrations for admissible

i orderings that are partial orders.
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We begin with a discussion of partial orders,in section 1. In
section 2 we stu@y propertiés_of Morse decompositions and admissible
orderings. In section 3 we define and prove the existence of index
filtrations for an admissible ordering of a Morse decomposition. An
introduction to the algebraic relations associated to an admissible
ordering of a Morse decomposition is presented in section 4. A more
thorough treatment of this tﬁpic can be found‘in [4#]. In section
5 we present a simple example illustrating the theory discussed in
sections 2 through 4. | _.

Besides Conley [ 1] and Conley-Zehnder [ 2], the works of Kurland
[6]1-[81] are‘importaﬁt references for the index theory presented

here. Recently, Salamon [ 9 ] has simplified the proofs of many of

the results contained in all of these references.

SECTION 1: Partial Orders

In this section we present the necessary background material
from partial orders. Most of the results described in this section
are given without proof since the proofs are all simple consequences

of the definitions.

DEFINITION 1.1:

A. A partial order on a set P is a relation < on P that satisfies:
1) the relation m < m never holds for m ¢ P,

2) ifw<nw and n' < 7", then w < ",




B. Aitotal order on a set P is a partial order on P that also

satisfies:

3) for each m, n' € P, either w < %' or n' < m. .
C. An ordered set is a set P on which there is a partial order. A

totally ordered set is a set P on which there is a total order.

NOTE: What we call a partial order is sometimes referred to as a

strict partial order.

For the remainder of this section let P be an ordered set with
a partial order <. If Q is a subset of P, then < induces a partial
order on Q called the restriction of < to Q.
If #, #' € P, and neither 7w < 7' nor 7' < m, then we say that ,

% and 7' are noncomparable.

DEFINITION 1.2:

A. An interval in < is a subset I c P for which w, 7' ¢ I and
m < 7" < 7' together imply that 7" € I. We denote the set of
intervals in < by I(<).

B. An attracting interval in < is a subset I ¢ P for which m ¢ I
and 7' < 7 together imply that n' € I. We denote the set of

attracting intervals in < by A(<).

The reason for the choice of the term "attracting" in definition
1.2.B becomes clear in the next section. For each m € P the set {n}

is an interval; we denote this simply by m.
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PROPOSITION 1.3:

A. A(<) ¢ I(<).

B. ¢ and P are in I(<), and if Il’ 12 e I(<), then Il n 12 e I(<).
C. ¢ and P are in A(<), and if Il’ 12 € A(<), then Il v I2 and
I,nI,are in A(<).

In what follows we use < to denote both the partial order on P

and the usual order on the integers. There should be no confusion.

DEFINITION 1.4: An adjacent n-tuple of intervals in < is an ordered

collection (Il, I, ...,In) of mutually disjoint subsets of P

satisfying:
n

1) u Ii € I1(<),
i=1

2) me Ij’ ® eI, j <k imply 7' ¢ .

We denote the collection of adjacent n-tuples of intervals in
< by In(<). Note that Il(<) = I(<). 1If (I,J) is an adjacent pair
(i.e. 2-tuple) of intervals, then we usually denote the interval
I vJby 1J. If (J,I) and (I,J) are both adjacent pairs of inter-
vals, then we say what I and J are noncomparable. If
n
v

(Il”"’ In) € In(<) and Ii = I, then we call (Il’ ooy In) a

i=1
decomposition of I.
Justification for the use of the term "intervals" in definition

l.4 is described in the following proposition:
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PROPOSITION 1.5: If (11,...,1n) € In(<), and p, q € {1,...,n} with

DT s
EALE

Qq . q’;r

P £q, then u I, € I1(<). In particular, for each p ¢ {1,...,n}, ‘a;‘
i=p o 4

IP e I(<). ;
el

o n ik

PROOF: Suppose w, 7' € v Ii’ and W < " < 7w'. Since u Ii is an s
i=p i=1

interval, it follows that there exists c € {1,...,n} such that ©" ¢ I-
If 7 € Ia and 7' € Ib’ then p < a < ¢c <b < q by property 2,
q
definition 1l.4. Therefore 7" ¢ v Ii'///
i=p
The following two propositions describe some useful properties

of adjacent n-tuples of intervals.

ok

PROPOSITION 1.6: Assume J € I{<). Then there exist intervals K ¢ A(%)

IRV
v ‘l'
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4

% »,
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such that (K\J,J) is a decomposition of K. Moreover, under such

N
r::-'

circum_stances K\J € A(<).

PROOF: K = {rm € P| there exists n' ¢ J with m < 7'} is an example. ///

PROPOSITION 1.7: Assume (I,,...,I ) e I (<), andp, q € {1,...,n}

q
with p < q. If I':= u Ii’ then:
i=p
' = -
A. (Il""’Ip-l’ I, Iq+1""’In) € Im(<) where m = n + p - q.

B. (Ip,...,Iq) € I (<) wherer=gq-p+ 1l

DA TR R L A G AU RS S Sy
SEILR 2R . Y OO YL Y
..";o.'.\"-_\' '._\'.c:'..! \'.'\:.‘n, ,..‘.' 4 LR R

% S
NN S L AR LR A i
'x?.'uf(:Eé.‘Ld:\'hn HACA A



An immediate consequence of proposition 1.7 is the fact that if
(1,J,K) is an adjacent triple (i.e. 3-tuple) of intervals, then (I,J),

(J,K), (IJ,K), and (I,JK) are all adjacent pairs of intervals.

DEFINITION 1.8: A partial order <1 on P is called an extension of <

if m' < 7 implies = < T If < is also a total order, then it is

called a linear extension of <.

PROPOSITION 1.9:

A. If I e I(<), and <; is the restriction of < to I, then

In(<l) c In(<) for each n.

B. If < is an extension of <, then In(<a) c In(<) for each n.

SECTION 2. Morse Decompositions

Let T be a Hausdorff topological space on which there is a flow.
We assume the reader is familiar with the ideas of invariant sets,
w~limit sets, w*-limit sets (o-limit sets), and attractor-repeller
pairs as defined in [11].

Let S be a compact invariant set in I'. If S1 and S2 are compact
invariant subsets of S, then C(Sl,Sz;s):= {yes| w(y)c §, and
w*(y) c 82} is called the set of orbits connecting S, to S, in §. We
usually write C(Sl,s2) when the set S is clear from context.

If A ¢ S is an attractor, then we denote its complementary
repeller by A*. If (A,A*) is an attractor-repeller pair in S, then
S decomposes (see [ 1]) into the union, A v C(A,A") y A% = S, This
decomposition is generalized (in [ 1) and definition 2.1 below) via

the Morse decompositions of S.
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Assume < is a partial order on a finite set P.

DEFINITION 2.1: A (<-ordered) Morse decomposition of S is a collec-

tion M = {M(ﬂ)}1T€P of mutually disjoint compact invariant subsets of

S such that if vy € S\ v M(m), then there exist w' < m with
TeP

Y € C(M(w'),M(m)).

Assume M = {M(<)}1T€ is a <-ordered Morse decomposition of S.

P

For notational convience we set C(w',m) = C(M(7w'),M(7)). The follow-

ing proposition is an immediate consequence of definition 2.1.

N
Ye

PROPOSITION 2.2: If <1 is a partial order on P, then M is also a

<l—ordered Morse decomposition of S if and only if C(m',m) # ¢ implies

.
Me

LA RIAL
g UL

w' <l 7 for each ' # w in P.

The partial order < on P induces an ocbvious partial order on M.
This partial order on M is also denoted by < and is called an admis-

sihle ordering of M (relative to S).

NOTE: A Morse decomposition of an invariant set may have many admis-
sible orderings. Furthermore, a collection M = {M(ﬂ)}ﬂeP may be a
Morse decomposition of more than one invariant set, and under such

circumstances the collection of admissible orderings of M relative to

one invariant set may differ from the collection of admissible order-
ings of M relative to another. It is easy to construct examples

illustrating these ideas.
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In what follows we define properties of M and of admissible
orderings of M. These properties are defined relative to the set S.
This is made evident in the definitions that follow; however, beyond

the definitions we usually omit reference to S when there would be

no resulting confusion.

The flow on S defines a natural partial order <F on P, <F is

defined by setting «' <G T if and only if there exists a sequence of
distinct elements of P: 7' = Myseresl =T, such that C(wj_l,wj) Fé
for each j = 1,...,n. With the aid of proposition 2.2 it is easy to
see that <F is a partial order on P, and M is a <F-ordered Morse
decomposition of S. The admissible ordering <p of M is called the
flow-ordering of M (relative to S). <F is an "extremal" admissible
ordering of M relative to S by

PROPOSITION 2.3: Every admissible ordering of M is an extension of

the flow-ordering of M.

PROOF: Suppose ' <_ 7. Then there exists a sequence:

F
T o= LISTIRRL AL such that C(ﬂj_l,nj) # ¢ for each j = 1,...,n.
j-1 < "j for each j = 1,...,n; therefore

n' < m, and the result follows.//

By proposition 2.2, n

Now, for each I € I(<) define

M(I) = (v M(m)) v ( v c(w',m)).
Tel ' el
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We call M(I) a Morse set (in S) of the admissible ordering < of M.
The collection of Morse sets of the admissible ordering <,

{M(I) | T € I(<)}, is denoted by MS(<).

NOTE: I(<) depends only on the partial order < on P. However, the
sets M(I) and the collection MS(<) depend not only on the admissible

ordering < of M but also on the invariant set S.

Propositions 1.9 and 2.3 imply MS(<) < MS(<F); i.e., the collec-
tion of Morse sets of the flow-ordering of M contains the Morse sets
associated to the other admissible orderings of M. Therefore we
call MS(<F) the Morse sets (in S) of M, and we denote this collection
by MS(M).

To simﬁlify notation we set C(I',I) = C(M(1'),M(1)) for I' and
I in I(<).

Clearly the Morse sets are invariant sets; if I is an attracting

interval (i.e., I € A(<)), then M(I) has another important property:

PROPOSITION 2.4: If I ¢ A(<), then M(I) is an attractor in S.

PROOF: By induction on the order of the Morse decomposition M. If
M is a one set Morse decomposition, then the result cbviously holds.

Assume the result is true for Morse decompositions of order n-1,

and let M have order n. Assume I is in A(<) and 6 is a minimal ele- BERAS
SND
ment of I. We claim that M(6) is an attractor in S. Let U be a 5&:?
Ha5a%
compact S-neighborhood of M(8) disjoint from u M(m). If ' ?g&'g
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N(I) = C, v N(J). IfB e W\C., then B { cl (N\N(P, _,)); therefore

B ¢ N(Pk-l)' However, N(Pk-l) = N(J) uEand W n E = ¢; thus B ¢ N(J).
It follows that W < Ck u N(J) = N(I) and the proof of the claim is com-
plete.

We now show that M(I) is the maximal invariant set in
clx(N(I)\N(¢)). (M(1),M(I*)) is an attractor-repeller pair in S. We
claim that M(I%*) n clx(N(I)\N(¢)) = ¢. To see this, note that
clx(N(I)\N(¢)) c clx(N(J)\N(¢)) u Ck' Proposition 3.3 implies that
(Nl,N(J),N(¢)) is an index triple for the attractor-repeller pair
(M(J),M(J*)). Therefore M(J*) < intx(Nl\N(J)), implying that
M(J#*) n N(J) = ¢. Since M(I%*) c M(J*), it then follows that
M(I*) n clx(N(J)\N(¢)) = ¢. C, © vk, M(I*) c M(Hk), and Y, n M(Hk) = ¢
together imply that M(I%*) n Ck = ¢. Thus, M(I¥) n clx(N(J)\N(¢)) ] Ck==¢,
completing the proof of the claim. Now, M(I%) n clx(N(I)\N(¢)) = ¢,

M(I) < intxclx(N(I)\N(¢)), and clx(N(I)\N(¢)) is contained in the isolat-
ing neighborhood clx(Nl\No) of S; therefore lemma 3.2 implies that M(I)
is the maximal invariant set in clx(N(I)\N(¢)).

N(¢) is positively invariant relative to N(I) because N(¢) is

positively invariant relative to N, and N(¢) < N(I) ¢ N

1 1°
Now suppose that y ¢ N(I) and Y'R+ ¢ N(I). We show that there

exists t > 0 such that y*[0,t] « N(I) and y*t € N(¢). If y e N(J),

then Y°R+ ¢ N(J), and therefore there exists t > 0 such that

Ye[0,t] < N(J) < N(I) and y*t € N($). Ify # N(J), then v € Ck' Let o

t)i= max{s | y*[0,s] < Ck}. Then Y-[O,tl] < C,, and since C, is positive- f

ly invariant relative to ch(Nl\N(Pk_l)) and (NYN(Pk-l)) is an index ti?:ﬁ
IR
SASES
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If Il’ I, ¢ A(<k), then it easily follows that N(Il) v N(I2)

2
= N(Il v 12), and with the aid of property 3 one can reasily see that

N(I;) o N(I2) = N(Il n I ). Thus, we n-ed to show that if I ¢ A(<k),

2
then (N(I),N(¢)) is an index pair for M(I). Note that N(¢) = Ny

Assume I € A(<). If m £ I, thenlce A(<,_;)» and by induction
it follows that (N(I),N(¢)) is an index pair for M(I). Now assume

= ® = % = .
m € I. SetJ I\ﬂk, I S\I, and J S\J. J e A(<k__1

duction it follows that (N(J),N(¢)) is an index pair for M(J). Set

). By in-

E'={i|m e¢P \J}andE= v C,. By definition, N(P_ .) = EUN(J).
i® k-1 Lep! k-

One can easily verify that E n M(I) = ¢.

1

To show that (N(I),N(¢)) is an index pair for M(I) we first show
that M(I) < intx(N(I)\N(¢)). Clearly M(I) n N(9) = ¢; so it is enough
to show that M(I) < inth(I). Assume Y € M(I). Note that

M(I) €s < inthl c clx(Nl\N(Pk_l)) v 1nth(Pk_l). We consider 2 cases:

Y € inth(Pk_l) and vy € clx(Nl\N(Pk_l)). In the former case, since
M(I) n E = ¢ and inth(Pk_l) cEBEuv 1nth(J), it follows that

Y € inth(J) c inth(I). Now consider the latter case, Yy eclx(%>N(Pk N.

-1
Since v ¢ M(I), it follows that y € Bk' Ck is a clx(Nl\N(Pk_l))-
neighborhood of Bk; therefore there is an X-neighborhood W of y such

that W n cl (N,\N(P, ;)) = C, . Since y ¢ int N, and y ¢ E, we may

k

further assume that W c Nl and Wn E =¢. We claim that W < N(I).

Given the claim, it then follows that y € inth(I) and the proof that

M(I) c intx(N(I)\N(¢)) is complete. To prove the claim note that
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k-1
N(P, .) =N v(wuv C/). Induction and proposition 3.3 imply
k-2’ Fho VY 5
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that (Nl,N(Pk_l),No) is an index triple for the attractor-repeller

e
Sk

v,
o

pair (H(Pk_l),H(Pz_l)). Therefore clx(Nl\N(Pk_l)) is an isolating
neighborhood for M(Pﬁ_l). It is easy to see that H(ﬂk) is an attractor
in H(Pﬁ-l)' H([k) is an attractor in S, and H(nk) n H(Lk) = ¢. It
follows that Bk:= B(H(nk),clx(Nl\N(Pk_l))) and B(H(Lk),N) are disjoint
compact sets.

If i <k and W, ; T then M(m ) c M(L,). Since

clx(Nl\N(Pk_l)) c N, it follows that B, ¢ B(M(Li),N). By induction

k

¢; therefore Bk and C; are disjoint compact sets.

C:.l n B(H(Li),N)
It is easy to see that B, and M(Hk) are disjoint compact sets.
Let V, be a I'-neighborhood of B, disjoint from B(M(Lk),N),H(Hk),
and each C; for which i <k and m; f m . By lemma 3.7 there exists a
compact neighborhood ck of Bk in clx(Nl\M(Pk_l)) such that Ck c Vk and
1)).
We claim that the collection C, = {C,},_ satisfies pro-
k i'i=1,...,k
perties 1-4. Properties 2 and 3 follow easily by induction and the

G is positively invariant relative to clx(Nl\N(Pk_

construction of Ck. To see that Ck is an isolating neighborhood of
H(ﬂk) note that H(Hk) contains the repeller complementary to H(nk) in
H(Pﬁ-l)’ and Ck n H(Hk) = ¢. Since H(ﬂk) c intxck and Ck is contained
in the isolating neighborhood clx(Nl\N(Pk_l)) of H(Pﬁ_l), lemma 3.2

e
{.\. ~
~

then implies that Ck is an isolating neighborhood of H(nk). It remains gbx}

to show _that Nk is an index filtration for the admissible ordering . ffil

iz ;,-»'
<k of Hk. g:;:E
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We claim that 6‘1 satisfies properties l-4. Property 3 follows
trivially. Property 2 follows because C, < V, and V, n B(M(Ll),N) = ¢.
To see that cl is an isolating neighborhood of M('lrl) note that H(Hl)
is the repeller complementary to M(ﬂl) in S and cl n M(Hl) = ¢,
Furthermore M(nl) c intxcl and C:L is contained in the isolating neigh-
borhood N of S; therefore lemma 3.2 implies C1 is an isolating neighbor-
.hood of H('trl). Finally, to verify property 4 we prove that (C:L UNO,NO)
is an index pair for H(ﬂl). M(nl) ¢ S and (Nl,No) is an index pair
for S; therefore H('lrl) n N, = ¢. Since H('lrl) c intxcl, it then follows
that M(m,) < intx((Cl u No)\No). M(nl) c CIX((Cl u Ny)\Ny) e C,, and
¢, is an isolating neighborhood of H(‘ll'l). Therefore H(nl) is the
maximal invariant set <:.1.x((cl u N, )\No). N, is positively invariant

relative to C, U “0 because No is positively invariant relative to Nl

1
and Ny € C, u Ny N . Last, suppose Y € C;, u Ny and vR' & c, uN,.
If t:= max{s I vye{0,s8] c Cl}, then the positive invariance of Cl relative
to N implies that t = max(s | y*[0,s] < N}. N = c1 (N,\N;) and (N, ,N,)
is an index pair, therefore y*t € N,. Thus, ye[0,t] < C, u Ny and
Yt € Np. It follows that (Cl v NO,NO) is an index pair for M('nl),
and ¥, = {C:l v NO,NO} is an index filtration for the admissible order-
ing <l of Ml. The case k = 1 is complete.

Now assume the result is true for k - 1, and let
o1 * {ci}i=l,.. k-1 be a collection satisfying properties 1-4. We
construct G, set Ck = ck-l v {Ck}, and prove the collection () satisfies

. properties 1-u,
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of theorem 3.8 has the property that (C , G N (v C,)) is an index S
k j=1 1 R

k-1 e

pair for H(ﬂk). Thus, to the "complex" u C, e "glue" a set C, E?

i=1

that is an isolating neighborhood of M(ﬂk), and this gluing is done Yoo
\' -
k-1 o
so that Ck attaches to U C, in an exit set for C,. C, is constructed o
=1 * k k
so that if i < k and 7, 4 mes then C; n C = ¢ (i.e., property 3 in
theorem 3.8 is satisfied). This insures that property 2 in definition

3.4 is satisfied by the index filtration constructed from the sets.

Furthermore, Ck is constructed so that (by satisfying property 2 in

theorem 3.8) a set Ch with k < m and T 4 m  can be added satisfying

ck n Cm = ¢ (i.e., so that property 3 in theorem 3.8 can be satisfied

at the mth stage of construction).

PROOF OF THEOREM 3.8: By induction on k.

Assume k = 1. We construct c,- Hﬁrl) and M(Ll) are disjoint

'

Vs

attractors in S. Therefore B(M(nl),N) and B(M(Ll),N) are disjoint

§

»

g% "
.‘1 a
et
' e .
<, -?",

compact sets. It is easy to verify B(M(nl),N) and M(Hl) are disjoint.

Let Vl be a I'-neighborhood of B(Mhrl),N) disjoint from B(M(Ll),N) and

M(Hl)' By lemma 3.7, there exists a compact N-neighborhood Cl of

B(M@Tl),N) such that C, < v, and C, is positively invariant relative

to N. Set Cl = {Cl}.
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For each k define L, = {m e P '"k g§mlandH ={neP|n i_ﬂk}-

Note that Lk € A(<), and M(Lk) is the maximal attractor in AF(<) dis-

23,

I
Py Sy /]
5

¥
[

joint from H(nk). Similarly, M(Hk) is the maximal repeller in S con-

el
Py
X

v

tained in MS(<) and disjoint from H(ﬂk).

L o

Oy
2
A

i)

Assume (Nl,No) is an index pair for S, and set N = clx(NfiNo).

T
1)
SAECH

We are now ready to prove the existence of an index filtration
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for the admissible ordering < of M.
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THEOREM 3.8: For each k = 1, ...,n, there exists a collection R

€, = {ci}i=l,...,k of compact subsets of N such that for each

DL

e
;"’;:' "l}
Loy

-
> W

i, j € {1,...,k} the following hold:

-

1) C; is an isolating neighborhood of M(ﬂi),

2) c, n B(H(Li).N) = ¢,

o
!

L5,

o gl
AP FARY
’J

LR
HE
LR S h

B

3) 1f LY and ﬂj are noncomparable, then Ci n Cj = ¢,

ety ol e
i Aatasa

11):= V)
4) If N{I): NO v (ﬂiEI Ci

), then the collection

‘P
oy
=X

) 3
€
o Y
iy R

nFerid

W := {MI)| I e A(<k)} is an index filtration for the admissible

ordering <k of Mk'

NOTE 1: The case k = n in theorem 3.8 establishes the existence of

an index filtration for the admissible ordering < of M.

NOTE 2: Theorem 3.8 is proved by induction on k. We build up the

collections Ck by adding sets; i.e., Ck is formed from Ck-l by

adding a set C One can verify that the C

X’ K constructed in the proof
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DEFINITION 3.6: If A is an attractor in an isolated invariant set,

and N is an isolating neighborhcod of the invariant set, then we set

B(A,N) = {y € N| y*R™ c N and a*(y) c A}.

B(A,N) is the set of orbits in N that flow to the attractor A
in backward time. In [ 2] it is proved that if A and N are as in
definition 3.6, then B(A,N) is compact.

The following lemma provides an important step in the proof of

the existence of index filtrations.

LEMMA 3.7: Assume A and N are as in definition 3.6. If V is a I'-
neighborhood of B(A,N), then there is a compact N-neighborhood Z of

B(A,N) such that Z c¢ V and Z is positively invariant relative to N.

NOTE 1l: Lemma 3.7 is due to Conley-Zehnder [ 2 ]. However, there is

a migtake in the proof of this result in [ 2]. Salamon presents a
correct proof in {9 ].

NOTE 2: With A, N, Z as in lemma 3.7, the facts that A c inth and

Ac intnz imply that A ¢ intxz.

Now, order the elements of P : 1r1, 'n2, Tas covs "n’ so that
n j < L% implies that j < k. Note that the total order induced on P
is a linear extension of <. Set P, = {nl,...,nk} and P*k = P\P,.
Let “x be the restriction of < to Pk. H(Pk) is an isolated invariant

set, and M = {"("i) |i=1,...,k} is a <,-ordered Morse decomposi-
tion of M( Pk)'
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B. If (I.t’J) is a decomposition of an attracting interval Ki € A(<)

s

s

L
",

A

for i = 1, 2, then N(Kl)\N(Il) = N(Kz)\N(Iz).

7

A

PROOF:
A. Property 2 of definition 3.4 implies N(¢) < N(I) c N(K); property
1 of definition 3.4 implies that (N(I),N(¢)) and (N(X),N(¢)) are
index pairs for M(I) and M(K), respectively. By corollary 2.7,
(M(I),M(J)) is an attractor-repeller pair in M(K). Therefore pro-
position 3.3 implies thatv (N(K),N(I)) is an index pair for M(J).
nI.. I, KeA(<), and (1,J) is a

1 2
decomposition of K. It is enough to show that N(K)\N(I) = N(Kl)\N(Il).

B. Let K:= Kl n Kz, I:= 1

Note that K and K n Il = I; therefore, by property 2,

1 1
definition 3.4, N(Kl) =z N(K) v N(Il) and N(K) n N(Il) = N(I). These

=Kvl

equalities imply N(Kl)\N(Il) = N(X)\N(1,) = NCK\NCI). /7

Now if M(J) € MS(<), then propositions 1.6 and 3.5.A imply that
in N there exists an index pair (N(X),N(I)) for M(J). 1If (N(Kl),N(Il))
and (N(KQ),N(I,‘,)) are two such index pairs, then, as usual, there is
a flow-defined homotopy equivalence between the index spaces
N(Kl)/N(Il) and N(Kz)/N(Iz). However, as a result of proposition 3.5.B

it follows that these index spaces are homeomorphic by a homeomorphism

induced by the identity map on N(Kz)\N( L)) = N( Kl)\N(Il). The importance
of this fact is brought out in section 4.

The remainder of this section is devoted to the proof of the exist-

ence of-index filtrations.
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Each Morse set in MS(M) is the intersection of an attractor .

and a repeller in S. Attractors and repellers in S are isolated

invariant sets, and intersections of isolated invariant sets are
isolated invariant sets. Therefore each Morse set in MS(M) is an L;gg
isolated invariant set. £'H}$
; ; e
We now extend the idea of an index triple for an attractor- ot
repeller pair to that of an index filtration for an admissible
ordering of a Morse decomposition. :Qg&}
DEFINITION 3.4: An index filtration for the admissible ordering < ‘ilii
of M is a collection of compact sets N = {N(I)}IEA(<) satisfying: :&5 :
1) for each I ¢ A(<), (N(I),N(¢)) is an index pair for the attrac- . E%E?f
tor M(I) e AF(<),
breom
- . . W
2) for each Il’ I2 e A(<), N(Il n 12) = N(Il) n N(Iz) and el
= 3
N(I, v 1) = N(I)) u N(L,). | ﬁ{:
e
Now assume N = {N(I)} is an index filtration for the .
IeA(<) R
e

admissible ordering < of M. Property 1l in definition 3.4 insures

that in N there is an index pair for each attractor M(I) e AF(<).

- v Towowoes

In proposition 3.5.A below we prove that in N there is an index

IO

e
R

% pair for each Morse set M(J) e MS(<).
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PROPOSITION 3.5: Assume J € I(<).

A. If (1,J) is a decomposition of an attracting interval K € A(<),

e
"+

o
."

then (N(K),N(I)) is an index pair for M(J) e MS(<).

ye=mse » v = -
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PROQF: Assume Y € Ny and y*[0,t] c N We show that y*[0,t] < N

2° 1’

and therefore Nl is positively invariant relative to N2. If
ye{0,t] n N, = ¢, then since (Nl’No) is an index pair, it follows
that y*{0,t] c Nl. Suppose Y*[0,t] n N0 7 ¢. Set
t' = min{s > 0| y's ¢ No}. Since (Nl,No) is an index pair,
y{0,t'] < Nl. (NQ’NO) is an index pair, yet' € No, and ye[t',t] N2;
therefore ye[t',t] c NO c Nl' Hence y+[(0,t] Nl.

If Y € N, and yeRY ¢ N,, then since (N,,N;) is an index pair and

Ny © N, there exists t > 0 such that ye[0,t] < N, and yt € N,.

We now show that A% c intx(N2\Nl). We claim that A% n N = ¢.

Then since A* ¢ § < intyx(N,\N;), it follows that A* c int (N \N,). To

prove the claim assume A% n Nl # ¢ and let vy € A% n N.. Y-R c AR c N

1

and since Nl is positively invariant relative to N2, it follows that

] Y-R+ c A% n Nl; therefore w(y) c A®* n Nl. A% qn No = ¢3
therefore w(y) n N, = ¢, and it follows that w(y) c el (Nl\No). But A

2’

yRF e N

is the maximal invariant set in clx(Nl\N ) and w(y) n A = ¢; contra-

diction. So A* n Nl = ¢, and therefore A* c intx(N2\Nl)

Last, we show that A* is the maximal invariant set in clx(N2\Nl).

X1
compact set X-neighborhood of A® contained in the isolating neighbor-

A c int N_, therefore A n clx(N2\N1) = ¢. Also, °1X(N2\Nl) is a

hood °lx(N2\No) of S. Thus, lemma 3.2 implies that A* is the maximal

invariant set in clx(Nz\Nl).ﬂV

Recall that P is an ordered set with partial order < and

M= {"(")}ugp is a <-ordered Morse decomposition of S.

:‘.m NORRRRND
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1

X may not be equal to the Conley index of S relative to X'. From .
now on we assume that the local flow X is fixed, and we omit refer-

ences to X in the definitions that follow.

Assume (A,A%*) is an attractor-repellerpair in S.

LEMMA 3.2: If N is an isolating neighborhood of S, and N' is a com
pact X-neighborhood of A disjoint from A* and contained in N, then )

N' is an isolating neighborhood of A. o i

NOTE: The roles of A* and A can be reversed in lemma 3.2, and there-

fore we have an analogous result for A%, Also notethat such sets X
N' can always be found, and thus A and A* are isolated invariant sets.
PROOF: We need to show that A is the maximal invariant set in N'. ’

Let T denote the maximal invariant set in N'; then A ¢ T ¢ S. 1If

Y € S\A, then w®(y) c A%*; therefore since A* n N' = ¢, it follows

that o®*(y) n N' = ¢. Thus Yy ¢ T, and this implies that A = T.//

With the following proposition the idea of an index pair for S

is generalized to that of an index triple for (A,A%).

PROPOSITION 3.3: Assume No c Nl c N2. If (Nl,No) is an index pair

for A, and (N2,No) is an index pair for S, then (N2,N1) is an index

pair for A%,

NOTE: We call such a triple (N2’N1’No) an index triple for the

attractor-repeller pair (A,A%*) in S.
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DEFINITION 3.1: A compact pair (Nl,No) in X is called an (X-)index

pair for S if

1) s« intx(Nl\No), and S is the maximal invariant set in
2) N, is positively invariant relative to N,,
3) ve Nl and Y°R+ ¢ Nl imply that there is a t > 0 such that

ye[o,t] ¢ N, and y°t ¢ N,.

NOTE: Property 1l implies clx(Nl\No) is an isolating X-neighborhood
of S. Properties 2 and 3 imply No acts as an "exit set" for Nl;

i.e., orbits leaving Nl do so through No.

If (Nl.No)is an X-index pair for S, we call the pointed quotient

space N,\N, an (X-)index space for S.

In [ 1] Conley proves the existence of index pairs for isolated
invariant sets, and furthermore proves that if (Nl,No) and (N'l,N'o)
are X-index pairs for an isolated invariant set in X, then there is
a flow-defined homotopy equivalence between the index spaces Nl\l‘l0
and N'l\ N'o.

Thus, associated to the isolated invariant set S there is a
homotopy type of a pointed space h(S), and if (Nl,No) is an X-index
pair for S, then the homotopy type of the pointed space Nl/N0 is

equal to h(S). h(S) is called the Conley index of S (relative to X).

NOTE: All of the index theory that we present here is defined
relative to the local flow; e.g., if S is an isolated invariant set

in the local flows X and X', then the Conley index of S relative to

.
---------

.....
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the Morse set M(J) is the i .c2rsection of an attractor M(K) and a ] ,
LN oI5
$ repeller M(I)®. Since attractors and repellers are compact invariant X
N N
;: sets, it follows that Morse sets are compact invariant sets. As a w38
fons

consequence of this we can restrict Morse decompositions to Morse

B

sets, and we can coarsen Morse decompositions using Morse sets. More

.’.
. .
£
- é‘l
e
» -~

E

4
N
e

specifically, we have the following proposition:

PROPOSITION 2.6: If I € I(<), then:

A. {Mr) |wm e I} is a <_-ordered Morse decomposition of M(I), where

I
'i <; is the restriction of < to L.
3 B. {M(m)|m e P\I} v {M(I)} is a Morse decomposition of S.
-4
5? As an easy consequence of proposition 2.6 we have
j;; COROLLARY 2.7: If (I,J) e 12(<), then (M(I),M(J)) is an attractor-
jés repeller pair in M(IJ).
SECTION 3: 1Index Filtrations
% We assume the reader is familiar w®th the concepts of local ;
é flows, isolated invariant sets, and isolating neighborhoods as defined ;&
)i in[1]). Let X< T be a locally compact metric local flow, and assume .E
.% S is an isolated compact invariant set in X. E%
'é Given 2 ¢ Y ¢ T, we call Z positively invariant relative to Y Ez
if Yy € Z and y*[0,t] © Y together imply that y+[0,t] c Z. By a !;
N
,g compact pair (Nl’Nb) we mean an ordered pair of compact spaces with Ei
&
I
&
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Y € U\M(8), then w®*(y) ¢ v M(m); so wh(y) ¢ U. It follows (see
TeP\O

AT

{1]) that the maximal invariant set in U (i.e., M(8)) is an attrac-

»

tor in S. M(P\@) is the repeller complementary to M(8) in S. The

Ly >

collection {M(m) | m e P\8} is a <,-ordered Morse decomposition of Qé
. ch
M(P\8), where <, is the restriction of < to P\@. I\8 is an attract- k;

4
H

dna ¥

ing interval in <,; therefore, by induction, M(I\8) is an attractor

g

in M(P\8). M(P\I) is the repeller complementary to M(I\8) in M(P\6). E:;
M(P\8) is a repeller in S, and M(P\I) is a repeller in M(P\8); there- g?
fore (see [ 1]) M(P\I) is a repeller in S. M(I) is the attractor :
complementary to M(P\I) in S, and the result follows.// %E

Ex

S
t DA

By proposition 1.3 it follows that the collection of attractors

.
a_

{M(I) | T € A(<)} contains ¢ and $ and is closed under intersections

£

v
-

;
|
-

7-—

and unions. This collection is an example of an attractor filtration N

in S, where

Cfttl
K
c?.('.. o]

DEFINITION 2.5: An attractor filtration in S is a finite collection

¥

A of attractors in S satisfying

e v
»

D i FRER
A PPN

o

l) ¢, S ¢4,
2) if Al, A2 ¢ A, then Al 1) A2, Al n A2 € A. &?
%
We set AF(<) = {M(I) | I ¢ A(<)}, and we call this collection X
the attractor filtration (in S) of the admissible ordering < of M. -
Proposition 1.6 states that if J € I(<), then there exist K, 5§
e
I € A(<) such that (I,J) is a decomposition of K. This implies that <

4%":';'-'1 )
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: pair, it follows that Y'tl € N(Pk_l). Ck nE=¢ and N(J) UE = N(Pk_l) \
) then imply that Yot € N(J). Now, as above, there exists t, > 0 such -
that (Y'tl)°[0,t2] c N(J) and (y-'cl)°1:2 € N(¢). Set t = t) +t,. Then

ye[o,t] c ¢ Y N(J) = N(I) and y*t € N(¢).

A i A

T,

5,

Thus, (N(I),N(¢)) is an index pair for M(I), and the proof of

theorem 3.8 is complete.//

ST

SECTION 4: The Algebraic Index Theory
In this section we present a brief and informal introduction to

the algebraic index theory. A detailed treatment of this material can

'l E )
¢, SRR

be found in [ 4 ].

: As is mentioned in section 3, if (Nl'"o) and (N', N'o) are index

. pairg for S, then there exist flow-defined homotopy equivalences be-

tween the index spaces Nl/No and N'l/ N'y. The details of the defini- ‘:‘5
: tion of the flow-defined homotopy equivalences can be found in [1,6], :
. and therefore we do not pursue this matter here. However, we do point i
_ out that if Nl\NO = N'l\N'o » then the flow-defined homotopy equivalence ,-
. between N /N, and N'|/N|) is the homeomorphism induced by the identity -

W LR

on Nl\N0 = N'l\ N'o. Also, in [1, 6] it is proved that the collection,

, .
R

I(S), consisting of the index spaces Nl/N0 and the homotopy classes of

FI e T T IR IR
v
a8y

the flow-defined maps between these index spaces, is a connected

simple system in the category of pointed spaces and homotopy classes

A TN

of maps.
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For the discussion that follows assume a coefficient ring R is
fixed. Given a topological-space 2, let C(Z) represent the singular
chains of Z with coefficients in R, and let H*(Z) represent the cor-
responding homology complex.

Define H(S), the homology index of S, to be equal to the homology
of the Conley index of S; i.e., H(S) = H,(h(S)). Note that if Nl/N0
is in I(S), then via the connected simple system there is a natural
identification between H(S) and H*(Nl/NO)'

Assume (N2,N1,No) is an index triple for an attractor-repeller

pair(A,A%) in S. There exist inclusion and projection maps on index

spaces:

i .
N/NG 3 Ny/Ng 2 N, /N,

and induced chain maps:

. .
CINJ/N)) % CN,/N) 2 (N, /N,) (4.1)

NOTE: For triples of spaces A € B ¢ C that are sufficiently "nice"

(this includes all index triples), associated to the sequence of chain

maps,

cB/a) 1 c(eray B clerm)

there is a functorial exact homology sequence:

Q

o HB/m) d mgerm) B omgemy 0 mea) -+ L.
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Now, passing to homology in (4.1) we obtain:

i 3
oo F H (N /BD) 5 H /N B H O/ 3 BN /N L (8.2)

This exact sequence is the homology version of Kurland's long coexact
sequence for an index triple. In [ 7] Kurland proves the long coexact
sequence for an index triple is functorial relative to I(A#*), I(A), and
I(S). 1In our setting this implies (4.2) induces the following exact
sequence:

i(a,s)
—d

... + H(A) Hesy BES:A%) poaay BARA) Ay oL, (8.3)

This exact sequence is called the homology index sequence of the attractor-
repeller pair (A,A%®).
The map 3(A%,A) in (4.3) provides information about the set of

orbits comnecting A and A* in S; for example:

PROPOSITION 4.1: If 3(A%,A) # 0 then C(A,A%) # ¢.

PROOF: If C(A,A%*) = ¢, then the Conley index of S is the topological
sum of the Conley indices of A and A%*; i.e., h(S) = h(A) v h(A®). It

follows that the sequence (4.3) splits and 3(A%*,A) = 0./

Recall P is an ordered set with partial order < and M = {M(n)}“ep
is a <-ordered Morse decomposition of S. For each J € I(<) set H(J)
equal to the homology index of the Morse set M(J); i.e., H(J) = H(M(J)).

Let ¥ = {N(I)} be an index filtration for the admissible ordering

IeA(<)
< of M. If J € I(<), and(Ilﬂj), (12’J) are decompositions of attracting

intervals Kl’ K, € A(<), respectively, then in I(M(J)) there is a
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homeomorphism between the index spaces N(Kl)/N(Il) and N(K2)/N(12).
Therefore there is an isomorphism between the chain complexes
C(N(Kl)/N(Il)) and C(N(K2)/N(12)). It follows that for every J € I(<)
there is defined a chain complex CN(J) with homology equal to H(J).

It is not difficult to see that if (I,J) € 12(<), there are chain

maps defined:

cy(n HBIL o1y RULIL ¢ () (4.4)

If we pass to homology in (4.4), we obtain the homology index sequence

of the attractor-repeller pair (M(I),M(J)) in M(IJ):

e () R TI ppgy ROLD, by BT yery -

If (1,J,K) € 13(<), then (I1,J), (J,K), (IJ,K), and (I,JK) are
all in 12(<). The associated sequences of chain maps weave together

in the following commutative braid diagram:

CN(I)

N
1
oy mx)‘p/ \ik“ Cy(d)
p —~ c,,(.no‘/
¢y(K) —
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Passing to homology we cbtain:

Y .
)

Summarizing, for the admissible ordering < of M there is a
collection consisting of homology indices H(I) for each I ¢ I(<),
and maps between homology indices i(I,1J), p(IJ,J), and 3(J,I) for
each (I,J) ¢ 12(<). We call this collection the homology index braid
of the admissible ordering of the Morse decomposition (relative to S).

Since every admissible ordering of M is an extension of the

flow-ordering <p of M, it follows that the homology index braid of <« R
is a subcollection of the homology index braid of <p: Therefore we
refer to the homology index braid of <l~" as the homology index braid of

the Morse decomposition (relative to S).
In [ 4] we condense the information contained in the homology

index braid of an admissible ordering of M to a collection of matrices
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of maps between the homology indices of the invariant sets M(7) ¢ M. '
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These matrices are called the connection matrices of the admissible

ordering. Generalizing the manner in which 3(A%*,A) contains informa-

tion about C(A,A®), the connection matrices contain information about

sy
I

.-
i

the structure of the sets of connecting orbits C(n',n) for ', w ¢ P.
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Summarizing further, given N, an attractor filtration for the

admissible ordering <, there is a collection consisting of chain com-

PRLAR

plexes, CN(I) for each I ¢ I(<), and chain maps, i(I,IJ) and p(1J,J) -ig
for each (I,J) € 12(<). We call this collection the chain complex
braid of the index filtration. The chain complex braid of an index
filtration for an admissible ordering of a Morse decomposition has

the important property that upon passing to homology the chain complex
braid induces the homology index braid of the admissible ordering of

the Morse decomposition.

SECTION 5: An Example

Consider the following family of ordinary differential equations

parameterized by the variable 6 > 0:

X ==~y

y

-y xx - DA - %)

The complete set of bounded solutions, Sy, for these equations R
is shown (along with some nearby orbits) for various values of 6§ > 0
in figure 1. 1In all cases the set Sy is an isolated invariant set gﬂkﬂ

and the collection My = {He(i)} is a Morse decomposition of Sg. -SSR

)
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The usual total order on the integers induces an admissible

ordering of He for each 6. For 0 = 6* this admissible ordering is

also the flow-ordering. The partial order 1 < 2, 1 < 3 induces an
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admissible ordering of MB for each 6 # 6%, For 6 > 0% this admissible .
ordering is also the flow-ordering. The partial order 1 < 2 induces

an admissible ordering, which is the flow-ordering, of M, for 6 < 0%,

o

This example serves to illustrate the fact (which is presented
formally in [5]) that Morse decompositions and admissible orderings
of Morse decompositions continue locally under perturbation. Further-
more, this example establishes that the flow-ordering of a Morse
decomposition (even though it does continue to an admissible ordering
of nearby Morse decompositions) does not necessarily continue to the
flow-ordering of nearby Morse decogpositions.

To illustrate an example of an index filtfation and a homology

index braid consider the case 6 = 6* above. Qualitatively this flow

can be depicted as in figure 2,

+.[4(—<3—)
<
% - > \-in({fi .
A /__—'/+
Figure 2
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An index filtration for the flow-ordering of the Morse decomposi-

. .;“‘l"_ ;

a0
&5
{1

tion M = {M(i)} is {llustrated in Figure 3:

v

fu(?)
r

M@ MY -
| s
N($) N(1) N(12) N(123)
— —3 c—
Figure 3

The homology index of each Morse set can be computed by choosing
appropriate index pairs from the index filtration above. For each
Morse set the homology index is trivial in all dimensions except

dimensions one and zero. The following table illustrates dimension
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one (top row) and dimension zero (bottom row) of the homology index

(with Zz coefficients) of each Morse set:
M(1) M(2) M(3) M(12) M(13) M(123)
0 232 ZZ2 0 2Z219522 ZZ2
!Zz 0 0 (] 0 0

To examine the homology index braid of the Morse decomposition
we point out that there is only one adjacent triple of intervals,
(1,2,3), in the flow-ordering, and in the corresponding braid diagram
all of the non-trivial homology and homology maps appear in that part
of the braid diagram that we obtain by replacing I, J, and K in dia-
gram (4.5) with 1, 2, and 3, respectively, and by starting with dimen-
sion 2 of H(1) in the upper left and dimension 3 of H(3) in the
upper right. Thus with an appropriate choice of homology generators

we obtain:
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In [ 4] we condense this information into the collection of
connection matrices of the Morse decomposition and indicate how the
connection matrices reveal information about the structure of the
sets of orbits connecting the sets in the Morse decomposition.

It is instructive to compute the homology index braids for the
cases O # 6% and cbserve the changes that occur under perturbation
from © = 6,. This problem is discussed further in [ 5] where we
present the continuation theory for homology index braids and con-

nection matrices.
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